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João Pessoa, PB, Brazil

E-mail: saharyan@server.physdep.r.am

Mohammad R. Setare

Department of Science, Payame Noor University,

Bijar, Iran

E-mail: rezakord@ipm.ir

Abstract: Wightman function, the vacuum expectation values of the field square and

the energy-momentum tensor are evaluated for a scalar field obeying the Robin boundary

conditions on two spherical branes in (D + 1)-dimensional Rindler-like spacetime Ri ×
SD−1, with a two-dimensional Rindler spacetime Ri. This spacetime approximates the

near horizon geometry of (D + 1)-dimensional black hole. By using the generalized Abel-

Plana formula, the vacuum expectation values are presented as the sum of single brane and

second brane induced parts. Various limiting cases are studied. The vacuum forces acting

on the branes are decomposed into the self-action and interaction terms. The interaction

forces are investigated as functions of the brane locations and coefficients in the boundary

conditions.

Keywords: Field Theories in Higher Dimensions, Large Extra Dimensions, Black Holes.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep022007089/jhep022007089.pdf

mailto:saharyan@server.physdep.r.am
mailto:rezakord@ipm.ir
http://jhep.sissa.it/stdsearch


J
H
E
P
0
2
(
2
0
0
7
)
0
8
9

Contents

1. Introduction 1

2. Wightman function 2

3. Casimir densities 7

3.1 VEV for the field square 7

3.2 Energy-momentum tensor 10

4. Vacuum interaction forces between the branes 12

5. Conclusion 14

1. Introduction

Motivated by string/M theory, the AdS/CFT correspondence, and the hierarchy problem

of particle physics, braneworld models were studied actively in recent years (for a review

see [1]). In these models, our world is represented by a sub-manifold, a three-brane, em-

bedded in a higher dimensional spacetime. In particular, a well studied example is when

the bulk is an AdS space. The braneworld corresponds to a manifold with boundaries and

all fields which propagate in the bulk will give Casimir-type contributions to the vacuum

energy, and as a result to the vacuum forces acting on the branes. In dependence of the type

of a field and boundary conditions imposed, these forces can either stabilize or destabilize

the braneworld. In addition, the Casimir energy gives a contribution to both the brane and

bulk cosmological constants and, hence, has to be taken into account in the self-consistent

formulation of the braneworld dynamics. Motivated by these, the role of quantum effects

in braneworld scenarios has received a great deal of attention. For a conformally coupled

scalar this effect was initially studied in ref. [2] in the context of M-theory, and subsequently

in refs. [3] for a background Randall-Sundrum geometry. The models with dS and AdS

branes, and higher dimensional brane models are considered as well [4].

In view of these recent developments, it seems interesting to generalize the study

of quantum effects to other types of bulk spacetimes. In particular, it is of interest to

consider non-Poincaré invariant braneworlds, both to better understand the mechanism of

localized gravity and for possible cosmological applications. Bulk geometries generated by

higher-dimensional black holes are of special interest. In these models, the tension and

the position of the brane are tuned in terms of black hole mass and cosmological constant

and brane gravity trapping occurs in just the same way as in the Randall-Sundrum model.

Braneworlds in the background of the AdS black hole were studied in [5]. Like pure
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AdS space the AdS black hole may be superstring vacuum. It is of interest to note that

the phase transitions which may be interpreted as confinement-deconfinement transition

in AdS/CFT setup may occur between pure AdS and AdS black hole [6]. Though, in

the generic black hole background the investigation of brane-induced quantum effects is

technically complicated, the exact analytical results can be obtained in the near horizon

and large mass limit when the brane is close to the black hole horizon. In this limit the black

hole geometry may be approximated by the Rindler-like manifold (for some investigations

of quantum effects on background of Rindler-like spacetimes see [7] and references therein).

In the previous papers [8, 9] we have considered the vacuum densities induced by a

spherical brane in the bulk Ri × SD−1, where Ri is a two-dimensional Rindler spacetime.

Continuing in this direction, in the present paper we investigate the Wightman function,

the vacuum expectation values of the field square and the energy-momentum tensor for a

scalar field with an arbitrary curvature coupling parameter for two spherical branes on the

same bulk. Though the corresponding operators are local, due to the global nature of the

vacuum, these expectation values describe the global properties of the bulk and carry an

important information about the physical structure of the quantum field at a given point.

The expectation value of the energy-momentum tensor acts as the source of gravity in

the Einstein equations and, hence, plays an important role in modelling a self-consistent

dynamics involving the gravitational field. In addition to applications in braneworld models

on the AdS black hole bulk, the problem under consideration is also of separate interest as

an example with gravitational and boundary-induced polarizations of the vacuum, where

all calculations can be performed in a closed form. Note that the vacuum densities induced

by a single and two parallel flat branes in the bulk geometry Ri × RD−1 for both scalar

and electromagnetic fields are investigated in [10, 11].

The paper is organized as follows. In the next section we consider the positive frequency

Wightman functions in the region between two branes. On the basis of the generalized

Abel-Plana formula, we present this function in the form of the sum of single brane and

second brane induced parts. By using expression for the Wightman function, in section 3

we investigate the vacuum expectation values of the field square and the energy-momentum

tensor. Various limiting cases of the general formulae are studied. In section 4 the vacuum

forces acting on the branes due to the presence of the second brane are evaluated by

making use of the expression for the radial vacuum stress. The main results of the paper

are summarized in section 5.

2. Wightman function

We consider a scalar field ϕ(x) propagating on background of (D+1)-dimensional Rindler-

like spacetime Ri × SD−1. The corresponding metric is described by the line element

ds2 = ξ2dτ2 − dξ2 − r2
HdΣ2

D−1, (2.1)

with the Rindler-like (τ, ξ) part and dΣ2
D−1 is the line element for the space with positive

constant curvature with the Ricci scalar R = (D − 2)(D − 1)/r2
H . Line element (2.1)

– 2 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
9

describes the near horizon geometry of (D+1)-dimensional topological black hole with the

line element [12]

ds2 = AH(r)dt2 − dr2

AH(r)
− r2dΣ2

D−1, (2.2)

where AH(r) = k + r2/l2 − rD
0 /l2rn, n = D − 2, and the parameter k classifies the horizon

topology, with k = 0,−1, 1 corresponding to flat, hyperbolic, and elliptic horizons, respec-

tively. The parameter l is related to the bulk cosmological constant and the parameter r0

depends on the mass of the black hole. In the non extremal case the function AH(r) has a

simple zero at r = rH , and in the near horizon limit, introducing new coordinates τ and ρ

in accordance with

τ = A′
H(rH)t/2, r − rH = A′

H(rH)ξ2/4, (2.3)

the line element is written in the form (2.1). Note that for a (D + 1)-dimensional

Schwarzschild black hole [13] one has AH(r) = 1 − (rH/r)n and, hence, A′
H(rH) = n/rH .

The field equation is in the form

(

gik∇i∇k + m2 + ζR
)

ϕ(x) = 0, (2.4)

where ζ is the curvature coupling parameter. Below we will assume that the field satisfies

the Robin boundary conditions on the hypersurfaces ξ = a and ξ = b, a < b,

(

Aj + Bj
∂

∂ξ

)

ϕ

∣

∣

∣

∣

ξ=j

= 0, j = a, b, (2.5)

with constant coefficients Aj and Bj. The Dirichlet and Neumann boundary conditions

are obtained as special cases. In accordance with (2.3), the hypersurface ξ = j corresponds

to the spherical shell near the black hole horizon with the radius rj = rH + A′
H(rH)j2/4.

The branes divide the bulk into three regions corresponding to 0 < ξ < a, a < ξ < b,

and b < ξ < ∞. In general, the coefficients in the boundary conditions (2.5) can be

different for separate regions. In the corresponding braneworld scenario based on the

orbifolded version of the model the region between the branes is employed only and the

ratio Aj/Bj for untwisted bulk scalars is related to the brane mass parameters cj of the

field by the formula [8]
Aj

Bj
=

1

2

(

cj −
ζ

j

)

, j = a, b. (2.6)

For a twisted scalar the Dirichlet boundary conditions are obtained on both branes.

To evaluate the vacuum expectation values (VEVs) of the field square and the energy-

momentum tensor we need a complete set of eigenfunctions satisfying the boundary condi-

tions (2.5). In accordance with the problem symmetry, below we shall use the hyperspher-

ical angular coordinates (ϑ, φ) = (θ1, θ2, . . . , θn, φ) on SD−1 with 0 6 θk 6 π, k = 1, . . . , n,

and 0 6 φ 6 2π. In these coordinates the eigenfunctions in the region between the branes

can be written in the form

ϕα(x) = CαZ
(b)
iω (λlξ, λlb)Y (mk;ϑ, φ)e−iωτ , (2.7)
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where mk = (m0 ≡ l,m1, . . . mn), and m1,m2, . . . mn are integers such that 0 6 mn−1 6

· · · 6 m1 6 l, −mn−1 6 mn 6 mn−1. In eq. (2.7) Y (mk;ϑ, φ) is the spherical harmonic of

degree l [14], and

Z
(j)
iω (u, v) = Ī

(j)
iω (v)Kiω(u) − K̄

(j)
iω (v)Iiω(u), j = a, b, (2.8)

with Iiω(x) and Kiω(x) being the modified Bessel functions with the imaginary order,

λl =
1

rH

√

l(l + n) + ζn(n + 1) + m2r2
H . (2.9)

Here and below for a given function f(z) we use the barred notations

f̄ (j)(z) = Ajf(z) +
Bj

j
zf ′(z), j = a, b. (2.10)

Functions (2.7) satisfy the boundary condition on the brane ξ = b. From the boundary

condition on the brane ξ = a we find that the possible values for ω are roots to the equation

Ziω(λla, λlb) = 0, (2.11)

with the notation

Zω(u, v) = Ī(b)
ω (v)K̄(a)

ω (u) − K̄(b)
ω (v)Ī(a)

ω (u). (2.12)

For a fixed λl, the equation (2.11) has an infinite set of real solutions with respect to ω. We

will denote them by ωn = ωn(λla, λlb), ωn > 0, n = 1, 2, . . ., and will assume that they are

arranged in the ascending order ωn < ωn+1. In addition to the real zeros, in dependence of

the values of the ratios jAj/Bj , equation (2.11) can have a finite set of purely imaginary

solutions. The presence of such solutions leads to the modes with an imaginary frequency

and, hence, to the unstable vacuum. In the consideration below we will assume the values

of the coefficients in boundary conditions (2.5) for which the imaginary solutions are absent

and the vacuum is stable.

The coefficient Cα in (2.7) can be found from the normalization condition

rD−1
H

∫

dΩ

∫ b

a

dξ

ξ
ϕα

←→
∂ τϕ

∗
α′ = iδαα′ . (2.13)

where the integration goes over the region between two spheres. Substituting eigenfunc-

tions (2.7) and using the relation
∫

|Y (mk;ϑ, φ)|2 dΩ = N(mk) for spherical harmonics,

one finds

C2
α =

r1−D
H Ī

(a)
iω (λla)

N(mk)Ī
(b)
iω (λlb)

∂
∂ωZiω(λla, λlb)

∣

∣

∣

∣

∣

ω=ωn

. (2.14)

The explicit form for N(mk) is given in [14] and will not be necessary for the following

considerations in this paper.

First of all we evaluate the positive frequency Wightman function

G+(x, x′) = 〈0|ϕ(x)ϕ(x′)|0〉, (2.15)
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where |0〉 is the amplitude for the corresponding vacuum state. The VEVs for the field

square and the energy-momentum tensor are obtained from this function in the coincidence

limit of the arguments. In addition, the Wightman function determines the response of a

particle detector in given state of motion. By expanding the field operator over eigenfunc-

tions and using the commutation relations one can see that

G+(x, x′) =
∑

α

ϕα(x)ϕ∗
α(x′). (2.16)

Substituting eigenfunctions (2.7) into this mode sum formula and by making use of the

addition theorem

∑

mk

Y (mk;ϑ, φ)

N(mk)
Y (mk;ϑ

′, φ′) =
2l + n

nSD
C

n/2
l (cos θ), (2.17)

for the Wightman function in the region between the branes one finds

G+(x, x′) =
r1−D
H

nSD

∞
∑

l=0

(2l + n)C
n/2
l (cos θ)

∞
∑

n=1

Ī
(a)
iω (λla)e−iω(τ−τ ′)

Ī
(b)
iω (λlb)

∂
∂ωZiω(λla, λlb)

× Z
(b)
iω (λlξ, λlb)Z

(b)
iω (λlξ

′, λlb)
∣

∣

∣

ω=ωn

. (2.18)

In this formula, SD = 2πD/2/Γ(D/2) is the volume of the unit (D − 1)-sphere, C
n/2
l (x) is

the Gegenbauer polynomial of degree l and order n/2, θ is the angle between directions

(ϑ, φ) and (ϑ′, φ′).

As the normal modes ωn are not explicitly known and the terms with large n are highly

oscillatory, the Wightman function in the form (sum over n the summation formula derived

in ref. [11] on the basis of the generalized Abel-Plana formula [15]:

∞
∑

n=1

Ī
(b)
−iωn

(v)Ī
(a)
iωn

(u)
∂
∂z Ziz(u, v)|z=ωn

F (ωn) =

∫ ∞

0
dz

sinh πz

π2
F (z) −

∫ ∞

0
dz

F (iz) + F (−iz)

2πZz(u, v)
Ī(a)
z (u)Ī

(b)
−z(v).

(2.19)

As a function F (z) in this formula we choose

F (z) =
Z

(b)
iz (λlξ, λlλb)Z

(b)
iz (λlξ

′, λlb)

Ī
(b)
iz (λlb)Ī

(b)
−iz(λlb)

e−iz(τ−τ ′). (2.20)

The conditions for the formula (2.19) to be valid are satisfied if a2e|τ−τ ′| < ξξ′. For the

Wightman function one obtains the expression

G+(x, x′) = G+(x, x′; b) − r1−D
H

πnSD

∞
∑

l=0

(2l + n)C
n/2
l (cos θ)

∫ ∞

0
dω Ωbω(λla, λlb)

×Z(b)
ω (λlξ, λlb)Z

(b)
ω (λlξ

′, λlb) cosh[ω(τ − τ ′)], (2.21)

where

Ωbω(u, v) =
Ī
(a)
ω (u)

Ī
(b)
ω (v)Zω(u, v)

. (2.22)
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In eq. (2.21)

G+(x, x′; b) =
r1−D
H

π2nSD

∞
∑

l=0

(2l + n)C
n/2
l (cos θ)

∫ ∞

0
dω sinh(πω)

×e−iω(τ−τ ′) Z
(b)
iω (λlξ, λb)Z

(b)
iω (λlξ

′, λlb)

Ī
(b)
iω (λlb)Ī

(b)
−iω(λlb)

, (2.23)

is the Wightman function in the region ξ < b for a single brane at ξ = b and the second

term on the right is induced by the presence of the brane at ξ = a. The function (2.21) is

investigated in ref. [8] and can be presented in the form

G+(x, x′; b) = G+
0 (x, x′) + 〈ϕ(x)ϕ(x′)〉(b), (2.24)

where G+
0 (x, x′) is the Wightman function for the geometry without boundaries and the

part

〈ϕ(x)ϕ(x′)〉(b) = − r1−D
H

πnSD

∞
∑

l=0

(2l + n)C
n/2
l (cos θ)

∫ ∞

0
dω

K̄
(b)
ω (λlb)

Ī
(b)
ω (λlb)

×Iω(λlξ)Iω(λlξ
′) cosh[ω(τ − τ ′)] (2.25)

is induced in the region ξ < b by the presence of the brane at ξ = b. Note that the

representation (2.24) with (2.25) is valid under the assumption ξξ′ < b2e|τ−τ ′|. As it has

been shown in [8], the Wightman function for the boundary-free geometry may be written

in the form

G+
0 (x, x′) = G̃+

0 (x, x′) − r1−D
H

π2nSD

∞
∑

l=0

(2l + n)C
n/2
l (cos θ)

×
∫ ∞

0
dωe−ωπ cos[ω(τ − τ ′)]Kiω(λlξ)Kiω(λlξ

′), (2.26)

where G̃+
0 (x, x′) is the Wightman function for the bulk geometry R2 × SD−1. Outside the

horizon the divergences in the coincidence limit of the expression on the right of (2.26) are

contained in the first term.

It can be seen that the Wightman function in the region between the branes can be

also presented in the form

G+(x, x′) = G+(x, x′; a) − r1−D
H

πnSD

∞
∑

l=0

(2l + n)C
n/2
l (cos θ)

∫ ∞

0
dω Ωaω(λla, λlb)

×Z(a)
ω (λlξ, λla)Z(a)

ω (λlξ
′, λla) cosh[ω(τ − τ ′)], (2.27)

with the notation

Ωaω(u, v) =
K̄

(b)
ω (v)

K̄
(a)
ω (u)Zω(u, v)

. (2.28)

In this representation,

G+(x, x′; a) = G+
0 (x, x′) + 〈ϕ(x)ϕ(x′)〉(a) (2.29)
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is the Wightman function in the region ξ > a for a single brane at ξ = a, and

〈ϕ(x)ϕ(x′)〉(a) = − r1−D
H

πnSD

∞
∑

l=0

(2l + n)C
n/2
l (cos θ)

∫ ∞

0
dω

Ī
(a)
ω (λla)

K̄
(a)
ω (λla)

×Kω(λlξ)Kω(λlξ
′) cosh[ω(τ − τ ′)]. (2.30)

Two representations of the Wightman function, given by eqs. (2.21) and (2.27), are obtained

from each other by the replacements

a À b, Iω À Kω. (2.31)

In the coincidence limit the second term on the right of formula (2.21) is finite on the brane

ξ = b and diverges on the brane at ξ = a, whereas the second term on the right of eq. (2.27)

is finite on the brane ξ = a and is divergent for ξ = b. Consequently, the forms (2.21)

and (2.27) are convenient for the investigations of the VEVs near the branes ξ = b and

ξ = a, respectively.

We have investigated the Whightman function in the region between two branes for

an arbitrary ratio of boundary coefficients Aj/Bj . Note that in the orbifolded version

of the model the integration in the normalization integral goes over two copies of the

bulk manifold. This leads to the additional coefficient 1/2 in the expression (2.14) for the

normalization coefficient Cα. Hence, the Whightman function in the orbifolded braneworld

case is given by formula (2.21) with an additional factor 1/2 in the second term on the

right and in formula (2.23). As it has been mentioned above this function corresponds to

the braneworld in the AdS black hole bulk in the limit when the branes are close to the

black hole horizon.

3. Casimir densities

3.1 VEV for the field square

In this section we will consider the VEVs of the field square and the energy-momentum

tensor in the region between the branes. In the coincidence limit, taking into account

the relation C
n/2
l (1) = Γ(l + n)/Γ(n)l!, from the formulae for the Wightman function one

obtains two equivalent forms for the VEV of the field square:

〈0|ϕ2|0〉 = 〈00|ϕ2|00〉 + 〈ϕ2〉(j)

−r1−D
H

πSD

∞
∑

l=0

Dl

∫ ∞

0
dω Ωjω(λla, λlb)Z

(j)2
ω (λlξ, λlj), (3.1)

corresponding to j = a and j = b, and |00〉 is the amplitude for the vacuum without

boundaries,

Dl = (2l + D − 2)
Γ(l + D − 2)

Γ(D − 1)l!
(3.2)

is the degeneracy of each angular mode with given l. The VEV 〈00|ϕ2|00〉 is obtained

from the corresponding Wightman function given by (2.26). For the points outside the
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horizon, the renormalization procedure is needed for the first term on the right only, which

corresponds to the VEV in the geometry R2 × SD−1. This procedure is realized in [8] on

the base of the zeta function technique.

In eq. (3.1), the part 〈ϕ2〉(j) is induced by a single brane at ξ = j when the second

brane is absent. For the geometry of a single brane at ξ = a, from (2.30) one has

〈ϕ2〉(a) = −r1−D
H

πSD

∞
∑

l=0

Dl

∫ ∞

0
dω

Ī
(a)
ω (λla)

K̄
(a)
ω (λla)

K2
ω(λlξ). (3.3)

The expression for 〈ϕ2〉(b) is obtained from (induced by the presence of the second brane.

It is finite on the brane at ξ = j and diverges for the points on the other brane. By

taking into account the relation Z
(j)
ω (u, u) = Bj/j, we see that for the Dirichlet boundary

condition this term vanishes on the brane ξ = j.

Let us consider the behavior of the single brane part (3.3) in asymptotic regions of the

parameters. In the limit ξ → a this part diverges and, hence, for points near the brane the

main contribution comes from large values l. By making use of the corresponding uniform

asymptotic expansions for the modified Bessel functions, to the leading order we find

〈ϕ2〉(a) ≈ − δBa
Γ

(

D−1
2

)

(4π)
D+1

2 (ξ − a)D−1
, (3.4)

where δBa
= 1 for Ba = 0 and δBa

= −1 for Ba 6= 0. Hence, near the brane the brane-

induced part is negative for the Dirichlet boundary condition and is positive for non-

Dirichlet boundary condition. At large distances from the brane, ξ À rH , the dominant

contribution into (3.3) comes from the l = 0 term and in the leading order we have

〈ϕ2〉(a) ≈ −r1−D
H e−2λ0ξ

2SDλ0ξ

∫ ∞

0
dω

Ī
(a)
ω (λ0a)

K̄
(a)
ω (λ0a)

. (3.5)

In the limit when the position of the brane tends to the horizon, a → 0, with fixed ξ, we

use the formulae for the modified Bessel functions with small values of the argument. The

main contribution into the integral comes from the lower limit of the integration and we

obtain the formula

〈ϕ2〉(a) ≈ − r1−D
H δBa

2πSD ln2(rH/a)

∞
∑

l=0

DlK
2
0 (λlξ). (3.6)

In the limit rH → 0 the curvature for the background spacetime is large. In this limit

λl is also large. The exception is the term l = 0 for a minimally coupled scalar field for

which λ0 = m. For large values λl the main contribution into the integral in (integration

variable x = ω/λla, we estimate the integral by the Laplace method. This leads to the

following result

〈ϕ2〉(a) ≈ −δBa
r1−D
H a

4
√

πSDξ

exp[−2
√

ζn(n + 1)(ξ − a)/rH ]
√

λ0(ξ − a)
. (3.7)

– 8 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
9

For a minimally coupled scalar field the contribution of the terms with l > 1 is suppressed

by the factor e−2λl(ξ−a) and the dominant contribution comes from the l = 0 term:

〈ϕ2〉(a) = −r1−D
H

πSD

∫ ∞

0
dω

Ī
(a)
ω (ma)

K̄
(a)
ω (ma)

K2
ω(mξ). (3.8)

As we see, the behavior of the VEV in the high curvature regime is essentially different for

minimally and non-minimally coupled fields.

In the near-horizon limit, a, ξ ¿ rH , the main contribution into the sum over l in (3.3)

comes from large values l corresponding to l . rH/(ξ − a). To the leading order we can

replace the summation over l by the integration in accordance with the formula

∞
∑

l=0

Dlf(λl) →
2rD−1

H

Γ(D − 1)

∫ ∞

0
dk kD−2f(

√

k2 + m2). (3.9)

Now it is easily seen that from (3.3) we obtain the corresponding result for the plate

uniformly accelerated through the Fulling-Rindler vacuum.

In the geometry of two branes, extracting the contribution from the second brane, we

can write the expression (3.1) for the VEV in the symmetric form

〈0
∣

∣ϕ2
∣

∣ 0〉 = 〈00

∣

∣ϕ2
∣

∣ 00〉 +
∑

j=a,b

〈ϕ2〉(j) + 〈ϕ2〉(ab), (3.10)

with the interference part

〈ϕ2〉(ab) = −r1−D
H

πSD

∞
∑

l=0

Dl

∫ ∞

0
dωĪ(a)

ω (λla)

[

Z
(b)2
ω (λlξ, λlb)

Ī
(b)
ω (λlb)Zω(λla, λlb)

− K2
ω(λlξ)

K̄
(a)
ω (λla)

]

. (3.11)

An equivalent form for this part is obtained with the replacements (2.31) in the integrand.

The interference term (3.11) is finite for all values of ξ in the range a 6 ξ 6 b, including

the points on the branes. The surface divergences are contained in the single brane parts

only.

Let us consider the behavior of the interference part in the VEV of the field square

in limiting regions for values of the parameters. First of all, it can be seen that in the

limit a → b, to the leading order the result for the parallel plates in the Minkowski bulk

is obtained. When the left brane tends to the horizon, a → 0, the dominant contribution

comes from the lower limit of the integration in (3.11), and we have

〈ϕ2〉(ab) ≈ r1−D
H δBa

2πSD ln2(rH/a)

∞
∑

l=0

Dl
K̄

(b)
0 (λlb)

Ī
(b)
0 (λlb)

[

2K0(λlξ) −
K̄

(b)
0 (λlb)

Ī
(b)
0 (λlb)

I0(λlξ)

]

I0(λlξ).

(3.12)

In the limit b → ∞ for fixed values a and ξ, the main contribution comes from the lowest

mode l = 0, and to the leading order one finds

〈ϕ2〉(ab) ≈ e−2λ0b

SDrD−1
H

Ab − Bbλ0

Ab + Bbλ0

∫ ∞

0
dω

Ī
(a)
ω (λ0a)

K̄
(a)
ω (λ0a)

[

2Iω(λ0ξ)−
Ī
(a)
ω (λ0a)

K̄
(a)
ω (λ0a)

Kω(λ0ξ)

]

Kω(λ0ξ),

(3.13)
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with the exponentially suppressed interference part. The behavior of the interference part

in the limit rH → 0 can be investigated in the way similar to that for a single brane

part. For a non-minimally coupled scalar field the interference part is dominated by the

l = 0 term and is suppressed by the factor exp[−2
√

ζn(n + 1)(b−a)/rH ]. For a minimally

coupled scalar field the leading term is given by the l = 0 summand with λ0 = m and

the interference part behaves as r1−D
H . In the near-horizon limit, a, b ¿ rH , replacing

the summation by the integration in accordance with formula (3.9), it can be seen that

from (3.11) the result for the geometry of two parallel plates uniformly accelerated through

the Fulling-Rindler vacuum is obtained.

3.2 Energy-momentum tensor

The VEV of the energy-momentum tensor is expressed in terms of the Wightman function

as

〈0|Tik|0〉 = lim
x′→x

∂i∂
′
kG

+(x, x′) +

[(

ζ − 1

4

)

gik∇l∇l − ζ∇i∇k − ζRik

]

〈0|ϕ2|0〉, (3.14)

where Rik is the Ricci tensor for the bulk geometry. Making use of the formulae for the

Wightman function and the VEV of the field square, one obtains two equivalent forms,

corresponding to j = a and j = b (no summation over i):

〈0|T k
i |0〉 = 〈00|T k

i |00〉 + 〈T k
i 〉(j) − δk

i

r1−D
H

πSD

∞
∑

l=0

Dlλ
2
l

×
∫ ∞

0
dω Ωjω(λla, λlb)F

(i)
[

Z(j)
ω (λlξ, λlj)

]

. (3.15)

In this formula, for a given function g(z) we use the notations

F (0)[g(z)] =

(

1

2
− 2ζ

)

[

(

dg(z)

dz

)2

+

(

1 +
ω2

z2

)

g2(z)

]

+
ζ

z

d

dz
g2(z) − ω2

z2
g2(z), (3.16)

F (1)[g(z)] = −1

2

(

dg(z)

dz

)2

− ζ

z

d

dz
g2(z) +

1

2

(

1 +
ω2

z2

)

g2(z), (3.17)

F (i)[g(z)] =

(

1

2
− 2ζ

)

[

(

dg(z)

dz

)2

+

(

1 +
ω2

z2

)

g2(z)

]

− g2(z)

D − 1

λ2
l − m2

λ2
l

, (3.18)

with g(z) = Z
(j)
ω (z, λlj), where i = 2, . . . ,D and the indices 0,1 correspond to the coordi-

nates τ , ξ, respectively. In formula (3.15),

〈00|T k
i |00〉 = δk

i

r1−D
H

π2SD

∞
∑

l=0

Dlλ
2
l

∫ ∞

0
dω sinh πω f (i)[Kiω(λlξ)] (3.19)

is the corresponding VEV for the vacuum without boundaries, and the term 〈T k
i 〉(j) is

induced by the presence of a single spherical brane located at ξ = j. For the brane at ξ = a

and in the region ξ > a one has (no summation over i)

〈T k
i 〉(a) = −δk

i

r1−D
H

πSD

∞
∑

l=0

Dlλ
2
l

∫ ∞

0
dω

Ī
(a)
ω (λla)

K̄
(a)
ω (λla)

F (i)[Kω(λlξ)]. (3.20)
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For the geometry of a single brane at ξ = b, the corresponding expression in the region

ξ < b is obtained from (3.20) by the replacements (2.31). The expressions for the functions

f (i)[g(z)] in (3.19) are obtained from the corresponding expressions for F (i)[g(z)] by the

replacement ω → iω. It can be easily seen that for a conformally coupled massless scalar

the boundary induced part in the energy-momentum tensor is traceless. The boundary-free

part (3.19) and the single brane part 〈T k
i 〉(j) in the region ξ < j are investigated in ref. [8].

Now we turn to the investigation of the brane-induced VEVs in limiting cases. First

of all let us consider single brane part (3.20). At large distances from the brane, ξ À rH ,

the main contribution comes from the l = 0 term and one has

〈T k
i 〉(a) ≈ λ2

0δ
k
i F

(i)
0 〈ϕ2〉(a), (3.21)

where 〈ϕ2〉(a) is given by (3.5) and

F
(0)
0 = 1 − 4ζ, F

(1)
0 =

4ζ − 1

2λ0ξ
, F

(2)
0 = 1 − 4ζ − 1 − m2/λ2

0

D − 1
. (3.22)

In this limit the radial vacuum stress is suppressed by the factor λ0ξ with respect to the

corresponding energy density and azimuthal stresses. In the limit a → 0 when ξ is fixed

the main contribution into the ω-integral comes from the lower limit and to the leading

order we obtain

〈T k
i 〉(a) ≈ − δk

i r1−D
H δBa

2πSD ln2(rH/a)

∞
∑

l=0

Dlλ
2
l F

(i)[Kω(λlξ)]ω=0. (3.23)

For rH → 0, in the way similar to that for the field square it can be seen that for a non-

minimally coupled scalar field 〈T k
i 〉(a) is suppressed by the factor exp[−2

√

ζn(n + 1)(ξ −
a)/rH ]. For a minimally coupled scalar the main contribution comes from the l = 0 term

and the brane induced VEV (3.20) behaves like r1−D
H .

Now let us present the VEV (3.15) in the form

〈0|T k
i |0〉 = 〈00|T k

i |00〉 +
∑

j=a,b

〈T k
i 〉(j) + 〈T k

i 〉(ab), (3.24)

where the interference part is given by the formula (no summation over i)

〈T k
i 〉(ab) = −δk

i

r1−D
H

πSD

∞
∑

l=0

Dlλ
2
l

∫ ∞

0
dωĪ(a)

ω (λla)

×
[

F (i)[Z
(b)
ω (λlξ, λlb)]

Ī
(b)
ω (λlb)Zω(λla, λlb)

− F (i)[Kω(λlξ)]

K̄
(a)
ω (λla)

]

. (3.25)

The surface divergences are contained in the single brane parts and the term (3.25) is finite

for all values a 6 ξ 6 b. An equivalent formula for 〈T k
i 〉(ab) is obtained from eq. (3.25)

by replacements (2.31). The behavior of the interference part (3.25) in the limits a → 0

and b → ∞ is similar to that for the field square. In the near-horizon limit, a, b ¿ rH ,

for both single brane and interference parts replacing the summation by the integration in

accordance with formula (through the Fulling-Rindler vacuum is obtained.

– 11 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
9

4. Vacuum interaction forces between the branes

In this section we will consider the vacuum forces acting on the branes. The force acting

per unit surface of the brane at ξ = j is determined by the radial component of the vacuum

energy-momentum tensor evaluated at this point. By using the decomposition of the VEV

for the energy-momentum tensor given by (3.15), the corresponding effective pressures,

p(j) = −〈T 1
1 〉ξ=j, can be presented as the sum

p(j) = p
(j)
1 + p

(j)
(int), j = a, b, (4.1)

where the first term on the right is the pressure for a single brane at ξ = j when the second

brane is absent. This term is divergent due to the surface divergences in the subtracted

vacuum expectation values and needs additional renormalization. This can be done, for

example, by applying the generalized zeta function technique to the corresponding mode

sum. This procedure is similar to that used in ref. [9] for the evaluation of the surface

energy for a single brane. The second term on the right of eq. (4.1), p
(j)
(int), is the pressure

induced by the presence of the second brane, and can be termed as an interaction force.

This term determines the force by which the scalar vacuum acts on the brane due to the

modification of the spectrum for the zero-point fluctuations by the presence of the second

brane. It is finite for all nonzero distances between the branes and is not affected by the

renormalization procedure.

For the brane at ξ = j the interaction term is due to the third summand on the right

of eq. (3.15). Substituting into this term i = k = 1, ξ = j and using the Wronskian relation

for the modified Bessel functions one finds

p
(j)
(int) =

A2
j

2j2

r1−D
H

πSD

∞
∑

l=0

Dl

∫ ∞

0
dω

[(

λ2
l j

2 + ω2
)

β2
j + 4ζβj − 1

]

Ωjω(λla, λlb), (4.2)

with βj = Bj/jAj . The interaction force acts on the surface ξ = a + 0 for the brane at

ξ = a and on the surface ξ = b − 0 for the brane at ξ = b. In dependence of the values

for the coefficients in the boundary conditions, the effective pressures (4.2) can be either

positive or negative, leading to repulsive or attractive forces, respectively. For Dirichlet or

Neumann boundary conditions on both branes the interaction forces are always attractive.

For Dirichlet boundary condition on one brane and Neumann boundary condition on the

other one has p
(j)
(int) > 0 and the interaction forces are repulsive for all distances between

the branes. Note that the interaction forces can also be written in another equivalent form

p
(j)
(int) =

n(j)

2j

r1−D
H

πSD

∞
∑

l=0

Dl

∫ ∞

0
dω

[

1 +
(4ζ − 1) βj

(

λ2
l j

2 + ω2
)

β2
j + βj − 1

]

× ∂

∂j
ln

∣

∣

∣

∣

∣

1 − Ī
(a)
ω (λla)K̄

(b)
ω (λlb)

Ī
(b)
ω (λlb)K̄

(a)
ω (λla)

∣

∣

∣

∣

∣

. (4.3)

Now we turn to the investigation of the interaction forces in the asymptotic regions

of the parameters. In the limit a → b the dominant contribution into the expression on

the right of (4.2) comes from large values l and ω. Replacing the summation over l by the
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integration in accordance with
∑∞

l=0 Dlf(l) → 2
∫ ∞
0 dl lD−2f(l)/Γ(D − 1), and using the

uniform asymptotic expansions for the modified Bessel functions, to the leading order we

find

p
(j)
(int) ≈ σab

Γ
(

D+1
2

)

ζR(D + 1)

(4π)(D+1)/2(b − a)D+1
, (4.4)

where ζR(x) is the Riemann zeta function, σab = −1 for δBa
δBb

= 1 and σab = 1 − 2−D

for δBa
δBb

= −1. Hence, for small distances between the branes the interaction forces are

repulsive for the Dirichlet boundary condition on one brane and non-Dirichlet boundary

condition on the other and are attractive for all other cases. Note that in the limit a → b

the interaction part of the total vacuum force acting on the brane diverges, whereas the

renormalized single brane parts remain finite. From here it follows that at small distances

between the branes the interaction part dominates.

When the left brane tends to the horizon, a → 0, the main contribution into the

vacuum interaction forces comes from the lower limit of the ω-integral and one has

p
(a)
(int) ≈ − δBa

r1−D
H

2πSDa2 ln3(rH/a)

∞
∑

l=0

Dl
K̄

(b)
0 (λlb)

Ī
(b)
0 (λlb)

, (4.5)

p
(b)
(int) ≈ r1−D

H δBa
A2

b

4πSDb2 ln2(rH/a)

∞
∑

l=0

Dl
λ2

l b
2β2

b + 4ζβb − 1

Ī
(b)2
0 (λlb)

. (4.6)

In this limit the interaction forces have different signs for the Dirichlet and non-Dirichlet

boundary conditions on the brane ξ = a. The combination δBa
p
(j)
(int) is positive for large

values βb and is negative for small values of this parameter. In the limit b → ∞ for

fixed a, the dominant contribution comes from the lowest mode l = 0 and assuming that

Ab 6= ±λ0Bb, we have the estimates

p
(a)
(int) ≈ A2

ae
−2λ0b

2SDa2rD−1
H

Ab − λ0Bb

Ab + λ0Bb

∫ ∞

0
dω

(

λ2
l a

2 + ω2
)

β2
a + 4ζβa − 1

K̄
(a)2
0 (λ0a)

, (4.7)

p
(b)
(int) ≈ − λ0e

−2λ0b

SDbrD−1
H

Ab − λ0Bb

Ab + λ0Bb

∫ ∞

0
dω

Ī
(a)
ω (λ0a)

K̄
(a)
ω (λ0a)

, (4.8)

with the exponentially small interaction forces for both branes. In particular, the combi-

nation (A2
b − λ2

0B
2
b )p

(j)
(int) is positive/negative for large/small values βa. For small values of

the curvature radius rH , in the way similar to that used for the VEV of the field square,

it can be seen that for a non-minimally coupled scalar field the main contribution comes

from the l = 0 term and to the leading order we have

p
(j)
(int) ≈ −δBa

δBb
[ζn(n + 1)]3/4

√
ab

2
√

πSDr
D+1/2
H j

√
b − a

exp[−2
√

ζn(n + 1)(b − a)/rH ]. (4.9)

For a minimally coupled scalar field the dominant contribution comes from the l = 0 term

with λ0 = m and the interaction forces per unit surface behave like r1−D
H . In the near-

horizon limit, a, b ¿ rH , in (4.2) we replace the summation over l by the integration in

accordance with (3.9) and to the leading order the result for the geometry of two parallel

plates uniformly accelerated through the Fulling-Rindler vacuum is obtained.
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5. Conclusion

In this paper, we investigate the polarization of the scalar vacuum induced by two spherical

branes in the (D + 1)-dimensional bulk Ri × SD−1, assuming that on the branes the field

obeys the Robin boundary conditions. In the corresponding braneworld scenario based

on the orbifolded version of the model the coefficients in the boundary conditions are

expressed in terms of the brane mass parameters by formula (2.6). The most important

characteristics of the vacuum properties are the expectation values of quantities bilinear

in the field operator such as the field square and the energy-momentum tensor. As the

first step in the investigation of these VEVs we evaluate the positive frequency Wightman

function. The corresponding mode sum contains the summation over the eigenfrequencies.

In the region between the branes the latter are the zeros of the bilinear combination of

the modified Bessel functions and their derivatives. For the summation of the series over

these zeros we employ a variant of the generalized Abel-Plana formula. This allows us to

present the Wightman function as the sum of a single brane and second brane induced

parts, formulae (2.21) and (2.27).

The corresponding VEVs of the field square and the energy-momentum tensor are

obtained from the Wightman function in the coincidence limit and are investigated in

section 3. These VEVs are given by formulae (representations. We have considered various

limiting cases of the general formulae. In particular, we have shown that when the left

brane tends to the horizon the interference parts in the VEVs of the field square and the

energy-momentum tensor vanish as 1/ ln2(rH/a). In the limit when the right brane tends

to infinity, b → ∞, the interference parts are suppressed by the factor exp(−2λ0b). In

the high curvature regime, corresponding to small values rH , the behavior of the VEVs

is essentially different for minimally and non-minimally coupled scalar fields. For a non-

minimally coupled field the VEVs are suppressed by the factor exp[−2
√

ζn(n + 1)(ξ −
a)/rH ] for single brane parts and by exp[−2

√

ζn(n + 1)(b − a)/rH ] for the interference

parts. For a minimally coupled field the main contribution comes from the l = 0 term and

the VEVs behave as r1−D
H . In the limit when the both branes are near the horizon, to

the leading order the VEVs are obtained for the geometry of two parallel plates uniformly

accelerated through the Fulling-Rindler vacuum.

In section 4 we have investigated the vacuum forces acting on the branes. These forces

are presented as the sum of self-action and interaction parts. Due to the well-known surface

divergences, the self-action part needs additional subtractions. The interaction forces are

finite for all nonzero interbrane distances and are given by formula (4.2) or equivalently

by (4.3). In general, these forces are different for the left and right branes and, in de-

pendence of the values of the parameters, they can be either attractive or repulsive. In

particular, at small interbrane distances they are repulsive for the Dirichlet boundary con-

dition on one brane and non-Dirichlet boundary condition on the other, and are attractive

for all other cases. When the left brane tends to the horizon the interaction forces acting

on the left and right branes behave as 1/[a2 ln(rH/a)] and 1/ ln2(rH/a), respectively. In

the limit when the ξ-coordinate of the right brane tends to infinity, the interaction forces

for both branes are suppressed by the factor exp(−2λ0b).
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